Mathématiques

Question

Bonjour , c’est niveau première mais suite à un beug ça affiche côté collège désolé d’avance

u0 = 65
un+1 = 0,8un + 18.

1)
vn = un – 90.
Pouvez-vous démontrer que la suite (vn) est géométrique r=0,8. Et précisez la valeur de v0.

2)
Démontrer que, pour tout entier naturel n : un = 90 – 25 × 0,8n.


Merci d’avance !!

1 Réponse

  • Réponse:

    BONJOUR

    Explications étape par étape:

    2. a. Montrons que (Vn ) est une suite géométrique de raison q et de premier

    terme V0

    que l’on précisera:

    V

    n

    = Un

    - 90 <=> V

    n+1

    = Un+1

    - 90

    <=> V

    n+1

    = ( 0, 8Un

    + 18) - 90 (1) .

    Or: V0

    = U0

    - 90 => V0

    = 65 - 90 = - 25 et Un

    = V

    n

    + 90 .

    Ainsi: (1) <=> V

    n+1

    = ( 0, 8 [V

    n + 90 ] + 18) - 90

    => V

    n+1

    = 0, 8V

    n

    .

    Par conséquent, (V

    n ) est bien une suite géométrique de raison q = 0, 8 et

    de premier terme V0

    = -25 .

    2. b. Démontrons que, pour tout entier naturel n, Un

    = 90 - 25 x 0, 8n

    :

    Nous savons que: * V

    n

    = - 25 x ( 0, 8)

    n (d’après le cours )

Autres questions